不等式知识点总结
上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的不等式知识点总结,仅供参考,欢迎大家阅读。
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:
左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,AxCBxC(C0)
在不等式中,如果乘以同一个负数,不等号改向;例如:AB,AxC
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
1.不等式性质比较大小方法:
(1)作差比较法
(2)作商比较法
不等式的基本性质
①对称性:a>bb>a
②传递性:a>b,b>ca>c
③可加性:a>ba+c>b+c
④可积性:a>b,c>0ac>bc
⑤加法法则:a>b,c>da+c>b+d
⑥乘法法则:a>b>0,c>d>0ac>bd
⑦乘方法则:a>b>0,an>bn(n∈N)
⑧开方法则:a>b>0
2.算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)
如果为实数,则重要结论
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:
比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,
则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
4.不等式的解法
(1)不等式的有关概念同解不等式:两个不等式如果解集相同,那么这两个不等式叫做同解不等式。同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解变形。提问:请说出我们以前解不等式中常用到的同解变形去分母、去括号、移项、合并同类项
(2)不等式ax>b的解法
①当a>0时不等式的解集是{x|x>b/a};
②当a<0时不等式的解集是{x|x
(3)一元二次不等式与一元二次方程、二次函数之间的关系
(4)绝对值不等式|x|0)的解集是{x|-aa(a>0)的解集是{x|x<-a或x>a},几何表示为:oo-a0a
小结:解绝对值不等式的关键是-去绝对值符号(整体思想,分类讨论)转化为不含绝对值的不等式,
通常有下列三种解题思路:
(1)定义法:利用绝对值的意义,通过分类讨论的方法去掉绝对值符号;
上一篇: ui设计师年终工作总结
下一篇: 文化年度总结